Publications

Vaccine. 2004-04-16; 22.13-14: 1592-603.

Safety, tolerability, and antibody responses in humans after sequential immunization with a PfCSP DNA vaccine followed by the recombinant protein vaccine RTS,S/AS02A

Epstein JE, Charoenvit Y, Kester KE, Wang R, Newcomer R, Fitzpatrick S, Richie TL, Tornieporth N, Heppner DG, Ockenhouse C, Majam V, Holland C, Abot E, Ganeshan H, Berzins M, Jones T, Freydberg CN, Ng J, Norman J, Carucci DJ, Cohen J, Hoffman SL

PMID: 15068840

Abstract

Optimal protection against malaria may require induction of high levels of protective antibody and CD8(+) and CD4(+) T cell responses. In humans, malaria DNA vaccines elicit CD8(+) cytotoxic T cells (CTL) and IFNgamma responses as measured by short-term (ex vivo) ELISPOT assays, and recombinant proteins elicit antibodies and excellent T cell responses, but no CD8(+) CTL or CD8(+) IFNgamma-producing cells as measured by ex vivo ELISPOT. Priming with DNA and boosting with recombinant pox virus elicits much better T cell responses than DNA alone, but not antibody responses. In an attempt to elicit antibodies and enhanced T cell responses, we administered RTS,S/AS02A, a partially protective Plasmodium falciparum recombinant circumsporozoite protein (CSP) vaccine in adjuvant, to volunteers previously immunized with a P. falciparum CSP DNA vaccine (VCL-2510) and to naïve volunteers. This vaccine regimen was well tolerated and safe. The volunteers who received RTS,S/AS02A alone had, as expected, antibody and CD4(+) T cell responses, but no CD8(+) T cell responses. Volunteers who received PfCSP DNA followed by RTS,S/AS02A had antibody and CD8(+) and CD4(+) T cell responses (Wang et al., submitted). Sequential immunization with DNA and recombinant protein, also called heterologous prime-boost, led to enhanced immune responses as compared to DNA or recombinant protein alone, suggesting that it might provide enhanced protective immunity.

Metrics