Publications
Genome-Wide Evolutionary Analyses of G1P[8] Strains Isolated Before and After Rotavirus Vaccine Introduction
Zeller M, Donato C, Trovão NS, Cowley D, Heylen E, Donker NC, McAllen JK, Akopov A, Kirkness EF, Lemey P, Van Ranst M, Matthijnssens J, Kirkwood CD
PMID: 26254487
Abstract
Rotaviruses are the most important etiological agent of acute gastroenteritis in young children worldwide. Among the first countries to introduce rotavirus vaccines into their national immunization programs were Belgium (November 2006) and Australia (July 2007). Surveillance programs in Belgium (since 1999) and Australia (since 1989) offer the opportunity to perform a detailed comparison of rotavirus strains circulating pre- and postvaccine introduction. G1P[8] rotaviruses are the most prominent genotype in humans, and a total of 157 G1P[8] rotaviruses isolated between 1999 and 2011 were selected from Belgium and Australia and their complete genomes were sequenced. Phylogenetic analysis showed evidence of frequent reassortment among Belgian and Australian G1P[8] rotaviruses. Although many different phylogenetic subclusters were present before and after vaccine introduction, some unique clusters were only identified after vaccine introduction, which could be due to natural fluctuation or the first signs of vaccine-driven evolution. The times to the most recent common ancestors for the Belgian and Australian G1P[8] rotaviruses ranged from 1846 to 1955 depending on the gene segment, with VP7 and NSP4 resulting in the most recent estimates. We found no evidence that rotavirus population size was affected after vaccine introduction and only six amino acid sites in VP2, VP3, VP7, and NSP1 were identified to be under positive selective pressure. Continued surveillance of G1P[8] strains is needed to determine long-term effects of vaccine introductions, particularly now rotavirus vaccines are implemented in the national immunization programs of an increasing number of countries worldwide.