Publications
Studying Salmonellae and Yersiniae host-pathogen interactions using integrated 'omics and modeling
Ansong C, Deatherage BL, Hyduke D, Schmidt B, McDermott JE, Jones MB, Chauhan S, Charusanti P, Kim YM, Nakayasu ES, Li J, Kidwai A, Niemann G, Brown RN, Metz TO, McAteer K, Heffron F, Peterson SN, Motin V, Palsson BO, Smith RD, Adkins JN
PMID: 22886542
Abstract
Salmonella and Yersinia are two distantly related genera containing species with wide host-range specificity and pathogenic capacity. The metabolic complexity of these organisms facilitates robust lifestyles both outside of and within animal hosts. Using a pathogen-centric systems biology approach, we are combining a multi-omics (transcriptomics, proteomics, metabolomics) strategy to define properties of these pathogens under a variety of conditions including those that mimic the environments encountered during pathogenesis. These high-dimensional omics datasets are being integrated in selected ways to improve genome annotations, discover novel virulence-related factors, and model growth under infectious states. We will review the evolving technological approaches toward understanding complex microbial life through multi-omic measurements and integration, while highlighting some of our most recent successes in this area.