HMM Summary Page: TIGR01681

AccessionTIGR01681
NameHAD-SF-IIIC
FunctionHAD phosphatase, family IIIC
Trusted Cutoff35.75
Domain Trusted Cutoff35.75
Noise Cutoff34.70
Domain Noise Cutoff34.70
Isology Typesubfamily_domain
HMM Length132
AuthorSelengut J
Entry DateSep 19 2002 2:25PM
Last ModifiedFeb 14 2011 3:27PM
CommentThis model represents the IIIC subfamily of the Haloacid Dehalogenase (HAD) superfamily of aspartate nucleophile hydrolases. Subfamily III (also including IIIA - TIGR01662 and IIIB - PF03767) contains sequences which do not contain either of the insert domains (between the 1st and 2nd conserved catalytic motifs, subfamily I - TIGR01493, TIGR01509, TIGR01549, TIGR01488, TIGR01494, TIGR01658, TIGR01544 and TIGR01545, or between the 2nd and 3rd, subfamily II - TIGR01460 and TIGR01484). Subfamily IIIC contains five relatively distantly related clades: a family of viral proteins (TIGR01684), a family of eukaryotic proteins called MDP-1 and a family of archaeal proteins most closely related to MDP-1 (TIGR01685), a family of bacteria including the Streptomyces FkbH protein (TIGR01686), and a small clade including the Pasteurella BcbF and EcbF proteins. The overall lack of species overlap among these clades may indicate a conserved function, but the degree of divergence between the clades and the differences in archetecture outside of the domain in some clades warns against such a conclusion. No member of this subfamily is characterized with respect to function, however the MDP-1 protein [1] is a characterized phosphatase. All of the characterized enzymes within subfamily III are phosphatases, and all of the active site residues characteristic of HAD-superfamily phosphatases [2] are present in subfamily IIIC.
ReferencesRN [1] RM PMID: 11601995 RT MDP-1 is a new and distinct member of the haloacid dehalogenase family of aspartate-dependent phosphohydrolases. RA Selengut, JD RL Biochemistry 2001 Oct 23;40(42):12704-11 RN [2] RM PMID: 7966317 RT Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity. Application of an iterative approach to database search. RA Koonin EV, Tatusov RL. RL J Mol Biol 1994 Nov 18;244(1):125-32